
Managing distributed queries under anonymity constraints

Axel Michel
SDS team at LIFO

INSA Centre Val de Loire
Bourges, France

axel.michel@insa-cvl.fr

Benjamin Nguyen
SDS team at LIFO

INSA Centre Val de Loire
Bourges, France

benjamin.nguyen@insa-cvl.fr

ABSTRACT
In this paper, we consider the problem of the collection of

microdata from users, in order to compute aggregate que-
ries. Our main focus is on matching anonymity requirements
between users and queriers. Our work is based on the Trus-
ted Cells architecture and SQL/AA secure distributed query
evaluation framework.

1. INTRODUCTION
In many scientific fields, ranging from medicine to socio-

logy, computing statistics on personal information is central
to the discipline’s methodology. With the advent of the Web,
and the massive databases that compose it, statistics have
become “data science”: turning large volumes of microdata
into knowledge. The general public is slowly getting aware
that their own personal data can be unwillingly shared with
applications processing it, with many different objectives.
Many are of obvious use to the community, such as using
medical data to improve the knowledge of diseases, or sha-
ring energy consumption in smart grids. In all these applica-
tions, the knowledge comes from analysing aggregated data.
In most cases, these operations (i.e. global database queries)
provide equivalent results when run on anonymized data.
In this article, we look at the specific problem of users

participating in global queries, while respecting their ano-
nymity constraints (e.g. k-anonymity as defined by Sweeney
in [5]). We build upon the Trusted Cells (TC) [1] vision (see
Section 2), an asymmetric architecture (AA) based mixing
a large number of small, personal and inexpensive trusted
devices which equip individual participants (called Trusted
Data Servers or TDS) and an untrusted cloud infrastructure.
In this architecture, each user keeps their microdata stored
in a local, secured, relational database, called PlugDB 1.
The SQL/AA [6] system (see Section 2.2) is the distri-

buted query engine running on the asymmetric architecture
which can compute aggregate queries over user data stored
in the millions of individual TDSs without leaking any mi-
crodata during the query evaluation process.
However, the question of how user participation is mana-

ged in SQL/AA has not been studied. Thus our contribu-
tions, presented in Section 3 in this article concern the de-
finition of user anonymity requirements, and the evaluation
of these requirements, when deciding whether to participate
in a global aggregate query or not. Necessary background in-
formation is presented in Section 2 and Section 4 concludes.

1. See: https://project.inria.fr/plugdb/en/

2. BACKGROUND AND PROBLEM STATE-
MENT

Our work builds upon the Trusted Cells asymmetric ar-
chitecture, presented in 2010 [1]. The purpose of this archi-
tecture is to preserve users privacy by preventing data leaks
during computations on their data. Our focus here is on the
computation of SQL aggregations.

2.1 The Trusted Cells asymmetric architecture
Computations managed through the collaboration of two

parties. The first party is a (potentially large) set of Trus-
ted Data Servers (TDSs) which are tamper resistant hard-
ware (e.g. set-top box, secure USB token, smart phone).
They are (1) trusted but have (2) limited resources and
(3) low availability. Characteristics (2) and (3) impose
another party to compute expensive operations (e.g. col-
lecting, sorting), the Supporting Server Infrastructure
(SSI). It is an (1) untrusted infrastructure (e.g. the Cloud)
with (2) high performances and (3) high availability.
The threat model takes place because of the nature of the
SSI. It considers two kinds of SSI, honest-but-curious,
where the SSI tries to infer users’personal data but does not
modify protocol, and malicious, where the SSI may tamper
the protocol to infer data.

2.2 SQL/AA: global queries on Trusted Cells
SQL/AA is a protocol to execute SQL on the Trusted Cells

architecture [6]. Once an SQL query is issued by a querier, it
is computed in three phases: first the collection phase where
the TDSs decide to participate or not (i.e. send dummies
in that case) in the computation, evaluate the WHERE clause
and return encrypted data to the SSI. Second, the aggre-
gation phase, where TDSs receive encrypted data from the
SSI, decrypt it, and compute aggregations (e.g. AVG, COUNT).
Finally the filtering phase, where TDSs produce the final re-
sult by filtering out the HAVING clause and send the result to
the querier. We have chosen to use SQL/AA as query exe-
cution infrastructure in our work, because of its capacities
to securely compute relational queries (i.e. without leaking
any information).

2.3 Anonymity
In order to protect the privacy of users, queries must res-

pect a certain degree of anonymity. Many anonymity models
exist, such as differential privacy [2], k−anonymity [5] or `-
diversity [4]. In this article, we consider those two last mo-
dels, k-anonymity and `-diversity. A table is k−anonymous
if and only if each distinct non-sensitive value is present

Querier1

Q1 =
SELECT city, street,
AVG(salary)
GROUP BY city, street

Q1.metadata:
group by city, street:

anonymity: 5
diversity: 3

group by city:
anonymity: 10
diversity: 3

TDS Alice
policies:
— aggregation on salary:

anonymity: 5
diversity: 2

TDS Bob
policies:
— aggregation on salary:

anonymity: 6
diversity: 3

TDS Charlie
policies:
— aggregation on salary:

anonymity: 5
diversity: 4

SSI
queries list:
Q1, . . .

ask
query ask

query
ask
query

Q1
Q1

Q1

(salaryAlice,
cityAlice,
streetAlice)
D_FLAG=0

(salaryBob,
cityBob)
D_FLAG=0

(dummy_value,
dummy_city,
dummy_street)

D_FLAG=1

Q1

Figure 1: Example of collection phase with anonymity constraints.

at least k times (e.g. table 1). A k−anonymous table is
`−diverse if and only if each group of the same non-sensitive
value has at least ` distinct sensitive values (e.g. table 1).
We model those using GROUP BY and HAVING clauses in SQL
(see Section 3.1).

Non-sensitive Sensitive
ZIP Age Disease
112** > 25 Cancer
112** > 25 Cancer
112** > 25 Heart Disease
1125* * Heart Disease
1125* * Viral Infection
1125* * Cancer

Table 1: 3−anonymisous and 2−diverse table

2.4 Problem Statement
In this article, we investigate how to run queries respec-

ting anonymity constraints defined by users on SQL/AA.
Anonymity requirements must be defined by (a) the querier
on her query and (b) users on their microdata. The problem
statement is justified by the necessity to provide privacy-
preserving and more control to users’ data.

3. ENFORCING ANONYMITY IN SQL/AA
Consider the simple SQL query Q1 computing the average

salary of users grouped by city, street (see Fig. 1).
Assume that Alice is a TDS user. She does not know how

many other users are on her street. She may not want to
give her data if there are less than five TDS users in her
group (i.e. 5−anonymity). This condition can be enforced
using standard SQL as presented next.

3.1 Modelling anonymisation using SQL
General Principle: The generalisation of data is a high cost

operation that TDSs can’t compute easily. To avoid this ope-

ration, a querier can declare an anonymity guarantee in the
meta-data section of her query. TDSs can send their real
data (or dummies) if guarantees are good enough by com-
paring those with anonymity constraints declared by users.
Anonymity guarantees are ensured by the SQL/AA system.
It is important to note that this can be implemented by ad-
ding the following clause to the query: HAVING COUNT(*)>=5.
Alice, who is willing to share her salary data with a query

enforcing 5-anonymity will thus know that she can partici-
pate in Q1 by inspecting Q1.metadata. Thus, she will en-
crypt her data and a tag indicating that the data is real,
and send it back to the SSI (as in the protocol shown in
[6]). Consider Bob, who is only willing to participate if 6-
anonymity is enforced. He will not send his real data, but
instead send fake data, and a tag indicating this data is
fake (both information is encrypted), called a dummy tuple.
Note that Bob must send some answer to the SSI, other-
wise it would be able to infer some information about Bob’s
privacy policy.
Enforcing `-diversity: to ensure ` − diversity with ` >

1, the clause COUNT(DISTINCT salary) can be used. Since
this clause is an holistic function, we can compute it while
the aggregation phase by adding naively each distinct value
under a list or using a cardinality estimation algorithm such
as HyperLogLog [3].
Defining user anonymity policies: Each user defines a set

of policies, composed of sensitive attributes and anonymity
parameters. These policies are stored inside the TDS’s da-
tabase and are private.
Comparing queries with user anonymity constraints: Each

TDS rewrites the global query using its own privacy views.
If a TDS is not able to rewrite the query, or if the query
does not provide any results, then two possibilities occur.
If it is possible to rewrite the query locally by generali-
sing it (e.g. replacing group by city, street by group by
city) and if the query accepts this generalisation scheme
(see Q1.metadata in Fig. 1) then this generalised answer is
produced. This is what happens to Bob: answering the group

city street AVG(salary) COUNT(∗) COUNT
(DISTINCT salary)

Le Chesnay Dom. Voluceau 1500 6 4
Le Chesnay ****** 1700 12 7
Bourges Bv. Lahitolle 1600 3 3
Bourges ****** 1400 11 7

Table 2: Filtering phase pre-result example.

by city, street clause is not acceptable, but answering
just with city is. Otherwise (e.g. in the case of Charlie),
dummy tuples will be generated.

3.2 The modified protocol
Collection phase: After TDSs download the query, they

compare their anonymity constraints with the query anony-
mity guarantees. As shown above (see section 3.1) if anony-
mity constraints can’t be satisfied, users send dummy tuples.
In the case of real data are sent, the difference between ge-
neralised query and the initial query is the detail level of the
GROUP BY attribute.
Aggregation phase: To ensure that anonymity and diver-

sity can be verified, clauses COUNT(*) and COUNT(DISTINCT
salary) are computed in addition of the aggregation asked
by the querier. Generalised and not generalised group are
differentiate and their aggregations are not computed toge-
ther.
Filtering phase: If HAVING clauses can’t satisfy the privacy

guarantees then non generalised groups will be added into
the generalised group they belong. In the example table 2
the tuple (Bourges, Bv.Lahitolle, 1600) is merged with
the tuple (Bourges, 1400) to form the tuple (Bourges,
1442.86).

4. CONCLUSION
In this paper, we presented our approach to define and

enforce users’ anonymity policies on SQL GROUP BY queries
using the Trusted Cells architecture. Future work will in-
clude large scale testing of the efficiency of this approach.

5. REFERENCES
[1] T. Allard, N. Anciaux, L. Bouganim, Y. Guo, L. L.

Folgoc, B. Nguyen, P. Pucheral, I. Ray, I. Ray, and
S. Yin. Secure personal data servers: a vision paper.
PVLDB, 3(1):25–35, 2010.

[2] C. Dwork. Differential privacy. In Proceeding of the
39th International Colloquium on Automata, Languages
and Programming, volume 4052 of Lecture Notes in
Computer Science, pages 1–12. Springer Berlin /
Heidelberg, 2006.

[3] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier.
Hyperloglog: The analysis of a near-optimal cardinality
estimation algorithm. In Proceedings of the 2007
International conference on Analysis of Algorithms
(AOFA’07), 2007.

[4] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-diversity: Privacy beyond
k-anonymity. In Proceedings of the 22nd International
Conference on Data Engineering, ICDE 2006, 3-8 April
2006, Atlanta, GA, USA, page 24, 2006.

[5] L. Sweeney. k-anonymity: A model for protecting
privacy. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 10(5):557–570, 2002.

[6] Q. To, B. Nguyen, and P. Pucheral. SQL/AA:
executing SQL on an asymmetric architecture. PVLDB,
7(13):1625–1628, 2014.

	Introduction
	Background and Problem Statement
	The Trusted Cells asymmetric architecture
	SQL/AA: global queries on Trusted Cells
	Anonymity
	Problem Statement

	Enforcing Anonymity in SQL/AA
	Modelling anonymisation using SQL
	The modified protocol

	Conclusion
	References

